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Free surface Hele-Shaw flows around an obstacle: A random walk simulation

Vladislav A. Bogoyavlenskiy* and Eric J. Cotts
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This paper presents computer simulations of pressure driven viscous flows that creep in two dimensions
~Hele-Shaw cells!. We model the time and spatial evolution of free liquid-gas interfaces perturbed by solid
obstacles of various configurations such as wedges, steps, and ellipses. Our goal is to study short- and long-
scale obstacle effects on the interface shape and velocity. Specific focus is given to the dynamics of a triple
~gas-liquid-solid! contact line, which determines local wetting of obstacles. As a principal contribution, we
derive a functional relationship between the contact line velocity and the obstacle geometry.
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I. INTRODUCTION

The complex time development of a free interface t
separates immiscible fluids in a two-dimensional geome
~Hele-Shaw cell@1#! has been the subject of extensive the
retical and experimental studies since the end of the n
teenth century@2#. In this field, most of the research attentio
is addressed tounstablecases of the interface evolution, suc
as gravitational and viscous instabilities that were origina
captured by Lord Rayleigh, Taylor, and Saffman@3–5#. Sur-
prisingly, the opposite situation ofstableHele-Shaw hydro-
dynamics is much less investigated. The reason stems fro
seeming triviality of stable cases—the moving interface
imagined to be simply flat and normal to a flow directio
with no peculiarities—which is not always realized.

In the present work, we consider the problem of a unifo
pressure-induced replacement of an inviscid fluid~gas! by a
viscous one~liquid! in a plane Hele-Shaw cell; the relate
free-boundary formalism definitely yields stable solutio
@6#. The interface between liquid and gas is expected to cr
flat until we superimpose a solid obstacle for the flow—
should cause a spatial disturbance and, as a consequ
global curvature of the moving interface. Our goal will be
investigate the dynamics of this flow-obstacle interaction
both short and long length scales. Besides its fundame
importance, such a problem has direct relevance to engin
ing applications, e.g., in manufacturing of electronic devic
@7#.

The rest of this paper is organized as follows. In Sec
we introduce a mathematical formulation for liquid-gas
terfaces creeping in Hele-Shaw cells around solid obstac
After that in Sec. III we describe a numerical technique a
plied for modeling the free surface Hele-Shaw flows, a r
dom walk simulation. Next in Sec. IV we report numeric
data on the interface dynamics for various obstacle confi
rations such as~a! wedges,~b! steps, and~c! ellipses. In Sec.
V we discuss the results obtained, deriving a general form
for the velocity of a triple~gas-liquid-solid! contact line,
which determines local wetting of obstacles. Finally, conc
sions are provided in Sec. VI.

II. MATHEMATICAL FORMULATION

Let us consider a liquid-gas interface creeping aroun
solid obstacle in a plane Hele-Shaw cell~see Fig. 1!. Assum-
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ing a thicknessb of the cell to be infinitesimal in compariso
with its length and width, hydrodynamic equations for t
velocity v(r ,t) and the pressurep(r ,t) fields become effec-
tively two dimensional, as forr5(x,y) @5#. We consider our
Hele-Shaw flow to be driven by a pressure gradient~for in-
stance, due to capillary action at free surface!, dissipating by
the shear viscositym. So, in liquid bulk one has to solve
Laplace’s incompressibility law

¹2p~r ,t !50 ~1!

coupled with the Darcy relation

v~r ,t !52
b2

12m
“p~r ,t !. ~2!

FIG. 1. Moving-boundary-value problem for a liquid-gas inte
face G(t) creeping in two dimensions~Hele-Shaw cell! around a
solid obstacle.
©2004 The American Physical Society10-1
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In order to specify our dynamic problem, one needs
extend Eqs.~1! and ~2! by appropriate boundary condition
applied ~i! at the liquid-gas interface,~ii ! on the obstacle
surface, and~iii ! far upstream@6#. We define the kinematics
of the liquid-gas interfaceG(t) via the normal componen
(n) of liquid velocity,

]G

]t
[~v!n , ~3!

and consider a free surface condition,1

purPG(t)50. ~4!

In the vicinity of the obstacle, we assume a rigidity conditi
for the velocity field,

~v!n50, ~5!

allowing a free slip of the liquid-gas interfaceG(t) on the
solid wall.2 Finally, far upstream we take the most regu
case of a uniform flow profile,

vux→2`5v`5const. ~6!

III. NUMERICAL TECHNIQUE

Solving Eqs.~1!–~6!, our ultimate goal consists in track
ing the unknown liquid-gas interfaceG, a two-dimensional
curve, in time@6#. Although analytical treatments of simila
problems by the complex variable techniques have been
plored @8,9# and families of rigorous, steady-state solutio
have been reported in specific geometries@10–13#, for a gen-
eral free-boundary problem the dynamicsG(t) can hardly be
obtained analytically and, therefore, numerical methods
finding a solution must be examined.3

1Equation~4! neglects a contribution from the two-dimension
(x,y) curvature of the interfaceG(t). It does not, however, imply
that capillary forces naturally existing in the Hele-Shaw cell~be-
tween plates! have been excluded. Indeed, these forces are mo
determined by a curvature of the liquid-gas interface in thez dimen-
sion, normal to the flow plane. Thatz curvature represents a con
stant of the order of 1/b, so one can subtract the capillary pressu
at the moving interfaceG(t) from a corresponding value far up
stream,x→2`, in order to obtain the zero pressure condition
Eq. ~4!.

2This gives us an essentially correct approximation for the
thicknessb much less than the obstacle length scale. For m
detailed discussion about actual picture in the obstacle vici
~wetting region!, see Sec. V B.

3Clearly nonsteady solutions of the free-boundary problems ar
be different from those found for steady-state regimes. A numbe
investigators have treated steady-state cases for various geom
01631
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As an efficient numerical technique, in the present wo
we apply phase-fieldrandom walkmodeling. Its principal
concept, usually referred to as the diffusion-limited aggre
tion, was introduced by Witten and Sander in 1981@15#, and
then proposed for simulations of the free surface flows
Hele-Shaw cells@16#. An original trick in the computation is
that Laplace’s law for the liquid pressure,¹2p50 @Eq. ~1!#,
can be treated stochastically. For that, one would calculat
on-lattice visiting probabilityPv for a virtual particle execut-
ing a random Brownian walk~i.e., the sequence of discret
diffusion jumps in randomly chosen equivalent lattice dire
tions! within the region of liquid bulk and being adsorbed
the liquid-gas interfaceG(t). Upon this particle adsorption
the interface advances by a small step along the exte
normal; consider the analogy there asp↔Pv @16–22#. Com-
bined with an ensemble averaging to reduce stochastic no
these random walk schemes have demonstrated their val
and efficiency in modeling two-dimensional free surfa
flows for both unstable and stable situations@16,23–27#.
Here we implement computational algorithms that have b
tested to exclude effects of lattice anisotropy and grid s
@27#.

IV. RESULTS OF SIMULATION

A. Wedge geometry

Let us begin studies of the free surface Hele-Shaw flo
with the obstacle geometry of an infinite wedge of angleu
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and initial conditions; while these are of some~mainly mathemati-
cal! interest, they do not provide accurate solutions for actual fl
problems. The reason is that, in the general case, equipotentials
steady-state solution do not satisfy the basic kinematic requirem
for the moving interface, Eq.~3! @14#. That is to say, if one choose
as an initial condition a shape of the liquid-gas interfaceG that
corresponds to an original equipotential of the steady-state solu
the interface will not necessarily follow subsequent equipotent
of that solution.

FIG. 2. Free surface Hele-Shaw flows creeping around we
obstacles of angleu @narrowing wedge,u.0 ~left!; expanding
wedge,u,0 ~right!#. Dynamic quantities labeled are a flow velo
ity at infinity, v` ; a contact line velocityvc , and a flow distance a
infinity, D.
0-2
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FIG. 3. Quasistationary pic-
tures of a liquid-gas interfaceG
~solid curves! creeping around
wedge obstacles~dashed lines! of
angle u. ~a! Narrowing wedges,
u518°, 45°, and 72°.~b! and~c!
Expanding wedges, u5218°,
245°, 272°, 290°, 2108°,
2135°, 2162°, and2180°. Ra-
tios of a contact line velocityvc

and a velocity at infinityv` are
recorded.
e

s

o

n
ing

t it
r a
~see Fig. 2!. As an initial condition at the wedge origin, w
consider the liquid-gas interfaceG to be flat and normal to
the flow direction ~from left to right!. Proceeding to the
wedge, the interface becomes globally curved; our goal i
capture this change for various values of the angleu
P(2180°, . . . ,90°).

In Fig. 3, we present results of simulation for a series
wedges; pictures of the liquid-gas interfaceG are shown, as
are ratios between velocities at a triple~gas-liquid-solid! con-
tact line (vc) and at infinity (v` asy→`). The ratiovc /v`

gradually increases with the wedge angleu; for narrowing

FIG. 4. Quasistationary shape (xi ,yi) of a liquid-gas interfaceG
~normalized to a flow distance at infinityD) for ‘‘right corner,’’ u
5290°, and ‘‘straight edge,’’u52180°.
01631
to

f

wedges@u.0, plot ~a!# the contact line moves faster tha
the interface far away from the obstacle, and for expand
wedges@u,0, plots ~b! and ~c!#, vice versa. This velocity
difference causes complex dynamic shapes (xi ,yi) of the
interface; two specific casesu5290° ~‘‘right corner’’ ! and
u52180° ~‘‘straight edge’’! are illustrated in Fig. 4.

A remarkable feature of the wedge geometry is tha
yields a quasistationary free-boundary problem. Conside
time-independent flow at infinity,v`5const; this determines

FIG. 5. Scale-invariant contact line velocityvc
0 ~normalized to a

flow velocity at infinity, v`), as a function of wedge angleu
P(2180°, . . . ,90°). Computational data~solid circles with error
bars! are shown together with an interpolation by Eq.~7! ~dashed
curve!.
0-3
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the interface velocity]G/]t as a constant for all correspond
ing points ofG. In other words, the wedge flow is a sca
invariant and, as a consequence, the contact line velo
vc[vc

0 divided by v` depends on the wedge angleu only.
This angle dependence has been explored, and result
shown in Fig. 5; our data are well interpolated by the follo
ing function (u values should be substituted in radians!:4

vc
0

v`
5

11sinu

cosu
2

2

3
tanS u

3D2
u

9p
. ~7!

The connection betweenvc
0/v` andu by Eq. ~7! provides us

with a basic relation for the free surface Hele-Shaw flo
around an obstacle.5 It will be generalized in subsequent in
vestigations of nonstationary, transient problems below.

B. Step geometry

In order to capture transient regimes of the Hele-Sh
displacement, let us first study free surface flows creep
around a right~down- or up-! step~see Fig. 6!. As an initial
condition imposed just before a base of the step, we cons
the interfaceG to follow the wedge quasistationary behavi
@Eq. ~7!#, i.e., a ‘‘corner’’ shape (u5290°, Fig. 4! for the
down-step and a vertical line (u50°) for the up-step. The
contact line velocityvc is expected to undergo singula
jumps in both value and course at the base, subject of t
and spatial relaxation after that; our goal is to reveal dyna
relations for these down- and up-step transitions.

In Fig. 7, we summarize results of simulation; pictures
shown of the liquid-gas interfaceG evolving in time for the
down- @plot ~a!# and up-steps@plot ~b!#. As seen from plots,
this step geometry does raise nonstationary problem; ass
ing a uniform flow far away from the obstacle,v`5const as
y→`, the global interface shape (xi ,yi) and the contact line
velocity vc are no longer scale invariants but definite fun
tions of the front position (x). Starting from the step bas
x50, there is a region of singularity as a local interfa
curvature and the contact velocityvc go to infinity. This zero
neighborhood (x/h)→0 has been analyzed in detail and, a
result, the following scaling is reported~see Fig. 8!:

vc2v`

v`
}

1

xj
, ~8!

4In this relation, the first fraction term on the right side is a pr
cipal which comes analytically from integral reasons~volume con-
servation!, whereas the other two are empirical corrections requi
for a better interpolation.

5Recently, there has been reported a family of exact solutions
the wedge geometry@13#. These solutions deal with a bounda
condition somewhat different from ours: instead of fixing the flo
velocity far upstream, atx→2` @Eq. ~6!#, one fixes a rate of the
liquid-gas interface,]G/]t, at y→`. We note that reported solu
tions give similar results for narrowing wedges (u.0), but a dis-
crepancy of the order of 10–20 % arises for expanding wedgeu
,0).
01631
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wherej51 and 2 for the up- and down-steps, respective
When the front positionx is comparable with the step heigh
~h! and exceeds its value, the liquid-gas interfaceG(t) be-
comes less and less curved~it would apparently relax to a
straight line far downstream,x→`), whereas the contac
velocity vc converges tov` , obeying the relation~see Fig.
9! as

vc2v`

v`
}

1

11
x2

h2

. ~9!

C. Ellipse geometry

To continue studying transient dynamic regimes of t
free surface Hele-Shaw flows, let us consider the obstacl
be an ellipse of anisotropya ~see Fig. 10!; this choice ex-
tends the preceding step geometry by taking into acco
smooth, nonsingular solutions. Similar to the wedge confi

d

or

(

FIG. 6. Free surface Hele-Shaw flows creeping around step
stacles of heighth @down-step~left!; up-step ~right!#. Dynamic
quantities labeled are a flow velocity at infinity,v` ; a contact line
velocity vc ; and a front positionx.

FIG. 7. Dynamic pictures of a liquid-gas interfaceG(t) ~thin
curves! creeping around step obstacles~thick lines!: ~a! ‘‘down-
step’’ evolution,~b! ‘‘up-step’’ evolution. These pictures are take
in equal time intervals.
0-4
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FREE SURFACE HELE-SHAW FLOWS AROUND AN . . . PHYSICAL REVIEW E69, 016310 ~2004!
FIG. 8. Increments of contact line velocityvc ~relative and nor-
malized to a flow velocity at infinity,v`) as functions of front
positionx, measured close to step base,x,h. Computational data
~circles and squares for up- and down-steps, respectively! are ap-
proximated by Eq.~8! ~solid lines with marks!.

FIG. 9. Increments of contact line velocityvc ~relative and nor-
malized to a flow velocity at infinity,v`) as functions of front
positionx, measured far from step base,x.h. Computational data
~circles and squares for up- and down-steps, respectively! are ap-
proximated by Eq.~9! ~solid lines!.
01631
ration, we fix the liquid-gas interfaceG to be flat and normal
to the flow direction in the beginning, just before the o
stacle. As the interface creeps around the ellipse, glo
shapeG and the contact line velocityvc become dependen
on coordinates of the flow front; our goal is to investiga
their functional behavior for various values of the anisotro
coefficientaP(0, . . . ,̀ ).

In Fig. 11, we present results of simulation for two sp
cific cases:a51 @‘‘circle,’’ plot ~a!# and a5` @‘‘needle,’’
plot ~b!#; successive pictures of the liquid-gas interfaceG are
shown@due to reflection symmetry of the ellipse geomet
we calculate and draw only half~upper part! of the free sur-
face flow#. As seen from the dynamics, the global interfa
shape (xi ,yi) and the contact velocityvc exhibit rather non-
linear features. The sign of interface curvature is reveale
change twice between the obstacle vicinity and infinityy
→`), whereas the contact velocity varies by an order
magnitude at different flow stages. Characterizing these t
sients, we describe and discuss our data in terms of a l
angleu @measured counterclockwise between the tangen
obstacle surface and the flow direction~from left to right! far
from the obstacle, as shown in Fig. 10#; it makes definite
analogy to the wedge angleu ~compare with Fig. 2! for
nonstationary problems.

In Fig. 12, we plot theu dependence of the contact ve
locity vc with respect to its quasistationary valuevc

0 @Fig. 5,
Eq. ~7!# for the Hele-Shaw flow around a circle (a51). The
increment (vc2vc

0) is found to be well interpolated by a
cosine function:

FIG. 10. Free surface Hele-Shaw flow creeping around an
lipse obstacle of anisotropya ~ratio of diameters iny andx direc-
tions, dy /dx). Dynamic quantities labeled are a flow velocity
infinity, v` ; a contact line velocityvc ; and a local angleu.
0-5



n
n

V. A. BOGOYAVLENSKIY AND E. J. COTTS PHYSICAL REVIEW E69, 016310 ~2004!
FIG. 11. Dynamic pictures of a
liquid-gas interface G(t) ~thin
curves! creeping around ellipse
obstacles ~thick curve/line!: ~a!
‘‘circle,’’ a51 and ~b! ‘‘needle,’’
a5` ~horizontal dotted line at
the bottom denotes a reflectio
axis!. These pictures are taken i
equal time intervals.
(
ffi-
n in
be
vc2vc
0

vc
0

}cosu. ~10!

As follows from this relation, the difference (vc2vc
0)

FIG. 12. Increment of contact line velocityvc ~relative and nor-
malized to its quasistationary valuevc

0) as a function of local angle
u, measured for the flow around circle,a51 @Fig. 11~a!#. Compu-
tational data~solid circles with error bars! are shown together with
an interpolation by Eq.~10! ~dashed curve!.
01631
reaches its maximum at the top point of the obstacleu
50°, vc

05v`). The dependence on the anisotropy coe
cienta has been investigated there, and results are show
Fig. 13; the relevant velocity increment is reported to
directly proportional to the ellipse anisotropy,

FIG. 13. Increment of contact line velocityvc ~relative and nor-
malized to a flow velocity at infinity,v`) as a function of ellipse
anisotropya, measured at top points of obstacles,u50°. Compu-
tational data fora5

1
4 , 1

2 , 3
4 , 1, 4

3 , 2, and 4~squares with error
bars! are approximated by Eq.~11! ~solid line!.
0-6
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vc2v`

v`
50.3a. ~11!

V. DISCUSSION

In the preceding section, we modeled and analyzed
free surface flows that creep in Hele-Shaw cells around s
obstacles of various configurations such as~a! wedges,~b!
steps, and~c! ellipses. Now we are going to advance o
results; we would, first, derive a more general expression
the contact line velocityvc and second, consider effects
dynamic wetting in the obstacle vicinity.

A. Contact line velocity formula

Let us introduce the surface of an obstacle in terms of
local angle u, as we did for the flows around ellipse
~Fig. 10!. Assuming a Cartesian set of coordinates (x,y),
we define the surface curve by an equationu5u(x)
where the angle u[arctan(]y/]x) and its derivatives
$]u/]x,]2u/]x2, . . . % are finite and continuous. In furthe
treatments of the contact line velocityvc with u as a vari-
able, we primarily consider a zero- (u5const) and a first-
order ~finite u8[]u/]x) contribution,

vc5vc
0@11K~u,u8!#. ~12!

FIG. 14. Timet* for a liquid-gas interfaceG to creep around an
ellipse obstacle~normalized to ratio of diameterdx and flow veloc-
ity at infinity, v`5const) as a function of ellipse anisotropya.
Simulation data fora5

1
4 , 1

2 , 3
4 , 1, 4

3 , 2, and 4~solid diamonds
with error bars! are compared with an expectation from Eq.~14!
~dash-dotted curve!.
01631
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Here the quasistationary factorvc
0 ~for u5const) is governed

by Eq. ~7!, and K represents au8 correction obeying the
relation6

K~u,u8!5V~u!~ uyu8ug!, ~13!

where we suggest and separate the angle@V(u)# and the
derivative@ uyu8ug# dependencies.

The unknown functionV(u) and the exponent valueg in
Eq. ~13! can be determined from our data obtained for t
ellipse obstacles~Sec. IV C! as follows. Considering first the
Hele-Shaw flow around a circle@a51; Fig. 11~a!#, y5(1
2x2)1/2, we setuyu8u[1, i.e., the cosine relation by Eq.~10!
~see Fig. 12! is substituted forV(u). Next, for a regular
ellipse y5a(12x2)1/2, at the top point of its surface (x
50, u50°) we haveV[1 anduyu8ug5a2g. Since the cor-
responding increment of the contact velocityvc is propor-
tional toa @Eq. ~11!; Fig. 13#, we need to fix the exponentg
at 1/2, so we finally derive the contact line velocity as

vc5vc
0@110.3 cosuAuyu8u#. ~14!

Coupled with Eq.~7! in Sec. IV A, this formula essentially
connects the local (vc) and the global (v`) properties of the
free surface Hele-Shaw flows we have considered.

In order to provide a test for the validity of the expressi
above, we have calculated the timest* for free surface flows
to creep around ellipse obstacles of various anisotropies
numerical integration of Eq.~14! along the obstacle surface
and then compared these calculations with actual data f
the random walk simulations; corresponding results
shown in Fig. 14. As seen, the theoretical expectation p
cisely describes the simulations in a rather wide range of
anisotropy coefficient,aP(1/4, . . . ,4), i.e., for most of the

6This specific form for theu8 correction is suggested by the anal
sis of data for flows around steps—see the relaxation scale by
~9! in Sec. IV B—the increments of the contact velocityvc depend
on the term 1/(11x2/h2)5h@arctan(x/h)#8 which has an equivalen
for the continuous case (h↔y) asyu8. The absolute notationuyu9u
is used in Eq.~13! since the velocity increments are always positi
~Fig. 9!.

FIG. 15. Wetting phenomena in vicinity of a triple~gas-liquid-
solid! contact line. Dynamic quantities labeled are a contact l
velocity vc and a wetting angleQ.
0-7
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ellipse family. This allows us to conclude that Eq.~14! ap-
pears to be appropriate at least forany convex geometryof
the obstacle surface.

B. Consideration of dynamic wetting

In modeling the Hele-Shaw flows around obstacles,
originally imposed free slip of the liquid-gas interfaceG(t)
at solid boundaries@rigidity condition by Eq.~5!#. This is,
however, true only if we exclude from quantitative descr
tion a wetting region~with a lengh scale of the order of ce
thicknessb) in the obstacle vicinity~see Fig. 15!. Inside that
region the interface shape is known to deviate from the fr
slip solutions, making a wetting angleQ which depends on
dynamics of the contact line,vc(t) @28,29#.

The governing function for the wetting angleQ is gener-
ally given by a capillary number Ca defined as

Ca[
mvc

s
, ~15!

wheres is the coefficient of liquid-gas interphase tensio
Considering knowledge of the parameter Ca for a free s
face Hele-Shaw flow from Eqs.~7!, ~14!, and~15!, dynamic
wetting angleQ in the three-phase system is described by
experimental Hoffman’s relation@30#:

cosQe2cosQ

cosQe11
5tanh@4.96~Ca!0.702#. ~16!

HereQe denotes a static angle~corresponding to the thermo
dynamic equilibrium,vc50) by the Young law@29#
.I

. A

Li
c

01631
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cosQe5
sSG2sSL

s
~17!

(sSG and sSL are solid-gas and solid-liquid interphase te
sions, respectively!.

Thus one would explicitly determine the wetting angleQ
at each time moment for the free surface Hele-Shaw flo
around an obstacle from Eqs.~15!–~17!. After that, in vicin-
ity of the obstacle one can estimate and apply local corr
tions to the free-slip solutionsG(t) @28#.

VI. CONCLUSION

By a random walk computational technique, we have
vestigated the free surface Hele-Shaw flows driven aro
solid obstacles by a uniform pressure gradient far upstre
We have characterized the time and spatial evolution~on
both short and long scales! of a liquid-gas interface creepin
around obstacles as wedges, steps, and ellipses. Parti
attention has been addressed to the dynamics of a triple~gas-
liquid-solid! contact line for which we have derived a fun
tional relationship with the local geometry of obstacles. B
sides, wetting phenomena in the obstacle vicinity have b
considered.
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